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Summary: 6 
g 
oxidation selectivity of a number of 4 r-dimethyl-1,2,3,4,6,8a-hexahydronaph- 

t alenes 4 were examined. Exposure of the isolated a-epoxides 7 provided 
excellent yields (79-92x) of rearranged fused indene-oxetanes 8. Treatment of 
dF_epoxides 5 with BF3* OEtz also yields oxetanes 6 and related alcohols 9 and 10. 

As part of another project, we examined the reaction sequence described in equation 1. 

The direction of epoxidation of 15a was confirmed by single crystal x-ray analysis of 26; 

which indicated that the 4A- and 1OkCRe groups of 2 were ideally disposed in the chair-like 

A-ring for migration upon rupture of the C-5-Q bond.7 In the event, treatment of 2 with BFz* 

OEt (CRzC12, 00) provided 3 in 76% yield. The migration of the 4-CR3 group was expected based 

upon precedent71 but a priori the effect of the 8,9-double bond was unknown. 

290%) 3_(76%) 

2. 5 6 

These observations (eq. 1) and the close structural similarity of the C-3 to C-6 portion 

of 3 to the clerodane diterpenes,e ajugarin IV,sa and arenarolE= suggested that such compounds 

might be approached as outlined in equation 2 (Al 3: H). With proper choice of AZ and R3, 6 

might be readily converted to cis-clerodanes; and with epimerization at C-10, trans-clerodanes 

would be obtained. The success of this strategy depends upon selective epoxidation of 4 (eq. 

2, Ri q H) and a directed rearrangement of 5 to 6. We have examined the epoxidation 

selectivity and subsequent rearrangement of a variety of hexahydronaphthalenes 41 as described 

below. 

The first substrates treated with BFa*OEte (1.25 eq., CReCle, 0°) were the /-epoxides 7~ 

f. The reaction of 7f with BFo*OEtz (Table 2) provided a single compound, oxetane 8f,g in 92% 

yield. The nature of 8f was apparent from an inspection of spectral data;s,iolii 
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particularly, III/M6 (70eV): m/e 204 (M-CoHaO);l"~ll iH-NMR (250 MHz, CDClo)a: o = 4.75 (br m, 4- 

H),lzaJb 2.80 (br t, J = 8.3 Hz, 9-H), 2.76 (dd, J = 18.8, 2.3 Hs, 3-H), 2.26 (dd, J = 18.8, 

4.2 Hz, 3-H); and ‘3C-NMFt (68.9 MHZ, CDCla): d = 83.7 (s, C-10) and 81.8 (d, C-4).'2b 

Extensive decoupling studies ('A-NMR) suggested the C-9, C-l through C-4 arrangement shown. 

The nature of the ring system was demonstrated by exposure of 8f to NaCMe, MeCH providing the 

related 1,3-diene-SC(CHa)zOH ring-opened material (75%).* Reaction of the dienol with 

pyridinium chlorochromate afforded expected dihydroindene diesterelio which was identical in 

all respects when compared to literature data 1~ and an authentic sample.lab The cis 

relationship of the bridging oxetane to the ring-fusion hydrogen was indicated by nuclear 

Overhouser difference spectroscopy (NOEDS).lS The isolation of oxetanes 8 from BR OEtn 

treatment of epoxide 7 was unexpected;? however, an inspection of molecular models 
TABLE 1 

Compound R, 

4a Me 

c Me 

s H 

s H 

s! H 

s H 

4a H 

?!z H 

TABLE 3 ?I H 
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cop 
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H 
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Me 

Me 
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MCPBA 61 

MCPBA 90 
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NBS, aq, tBuOH 94 

MCPBA 78 
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MCPBA 77 

NBS.aq. tBuOH 60 

MCPBA 95 

Yield(%) Ratio(5:7) 

95:5 
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z!. H H cap - 5 2OA 27% IO% z! H cq.@ IAs 79 

5’ 
H CQp ccps - 53-A 307s 8% 

7a H H cqE1 87 

7’ H ca$.4e COpa 92 
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demonstrates the ideal positioning of the C-3-C-4 ring bond of 7 for migration with respect to 

the breaking C-5-Q bond, giving 8 after ring closure. Similar epoxides 7c, 7d and 7e provided 

oxetanes & (80X), 8d (79%), and 8s (87%), respectively. 

The s-epoxide 5a (Table 3) provided the expected (H&-migration product 3a (1.25 eq., BFo* 

olztz, cIkc12, 00; 81%) as expected by analogy to equation 1. However, epoxides 5c, Lie, and 5f 

failed to give even trace quantities of the desired products 3, yielding instead oxetanes 8 

(52-60%), and alcohols 9 (27-302) and 10 (O-10%). The oxetanes 8c, &, and 8f were compared 

to those isolated from rearrangement of epoxides 7 and were found to be identical. Alcohols 9 

and 10 were separated, acetylated and compared with the 4-GAc, 5-isopropenyl compounds derived 

from oxetanes 8 (pTsOH, AczO, PhH-reflux, 3 hrs.).g The acetates prepared from the major 

alcohols 9 were indistinguishable from those derived from oxetanes 8. The structures of 

alcohols 10 were secured after conversion of the acetates of 9 and 10 to single dienes (KOtBu, 

THF). 

The conversion of 5 to oxetanes 8 requires au inversion of configuration at C-5 and C-6 

of the parent 5 with respect to the 9-H. Such a process might occur as outlined in equation 

3. Rupture of the C-5-Q bond, accompanied by 10-H migration of the C-5-C-6 ring bond, could 

give 11. Further reaction of 11 with BR*OEta could eventually lead to 8.5hli0 

The processes described above illustrate the importance of remote substituents (lo-CH3) 

and functional groups (8,9-double bond) in directing the epoxidation of dienes 4 and the 

rearrangement of epoxides 5 and 7. Efforts to replace the C-10 H with a hydrogen equivalent 

to produce clerodane intermediates 8 are under study. These results will be reported in due 

course. 
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